Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 869
Filtrar
1.
Biomacromolecules ; 25(3): 1738-1748, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38340076

RESUMO

Physical hydrogels of natural polysaccharides are considered as ideal candidates for wound dressing due to their natural biological activity and no harmful cross-linking agents. However, it remains a challenge to fabricate such hydrogel dressings in a facile and low-cost way. Herein, we reported an easy and cost-effective method to construct CO2-mediated alkali-neutralization Curdlan (CR) hydrogels without using an external cross-linking agent. Two types of hydrogels (denoted as CR-NaOH and CR-Na3PO4, respectively) were fabricated by dissolving CR powders in a NaOH or Na3PO4 aqueous solution, followed by keeping the CR alkaline solutions in air. The obtained pure CR hydrogels possessed a tunable porous structure with walls containing different forms of nanofibrils. These hydrogels exhibited much higher gel strength by comparison with the gels prepared by conventional heating treatment. They were flexible, stretchable, twistable, and conformable to arbitrarily curved skins. Moreover, they exhibited ideal swellability, proper degradability, and water vapor transmission rate, and their physicochemical properties were closely related to CR concentration in the alkaline solution. These two hydrogels also supported the growth of L929 cells. Importantly, studies on wound healing revealed that both 3CR-NaOH and 3CR-Na3PO4 hydrogels were capable of accelerating the wound healing process through recruiting more macrophages/fibroblasts, inducing more collagen deposition and neovascularization (α-SMA and CD31) without carrying any exogenous bioactive components. In conclusion, the present work not only reported promising materials for application in wound therapy but also offered a facile and safe manufacturing procedure for generating pure CR physical hydrogels with better performance.


Assuntos
Dióxido de Carbono , Hidrogéis , beta-Glucanas , Hidrogéis/farmacologia , Hidrogéis/química , Hidróxido de Sódio/farmacologia , Cicatrização , Antibacterianos/farmacologia
2.
Cytokine ; 175: 156502, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237388

RESUMO

BACKGROUND: Hyperuricemia has been shown to be an inducer of pro-inflammatory mediators by human primary monocytes. To study the deleterious effects of hyperuricemia, a reliable and stable in vitro model using soluble urate is needed. One recent report showed different urate-dissolving methods resulted in either pro-inflammatory or anti-inflammatory properties. The aim of this study was to compare the effect of two methods of dissolving urate on both primary human peripheral blood mononuclear cells (PBMCs) and THP-1 cells. The two methods tested were 'pre-warming' and 'dissolving with NaOH'. METHODS: Primary human PBMCs and THP-1 cells were exposed to urate solutions, prepared using the two methodologies: pre-warming and dissolving with NaOH. Afterwards, cells were stimulated with various stimuli, followed by the measurement of the inflammatory mediators IL-1ß, IL-6, IL-1Ra, TNF, IL-8, and MCP-1. RESULTS: In PBMCs, we observed an overall pro-inflammatory effect of urate, both in the pre-warming and the NaOH dissolving method. A similar pro-inflammatory effect was seen in THP-1 cells for both dissolving methods after restimulation. However, THP-1 cells exhibited pro-inflammatory profile with exposure to urate alone without restimulation. We did not find MSU crystals in our cellular assays. CONCLUSIONS: Overall, the urate dissolving methods do not have critical impact on its inflammatory properties. Soluble urate prepared using either of the two methods showed mostly pro-inflammatory effects on human primary PBMCs and monocytic cell line THP-1. However, human primary PBMCs and the THP-1 differ in their response to soluble urate without restimulation.


Assuntos
Hiperuricemia , Ácido Úrico , Humanos , Ácido Úrico/farmacologia , Ácido Úrico/metabolismo , Hiperuricemia/metabolismo , Leucócitos Mononucleares/metabolismo , Hidróxido de Sódio/metabolismo , Hidróxido de Sódio/farmacologia , Monócitos , Mediadores da Inflamação/metabolismo
3.
J Biol Chem ; 299(7): 104910, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315789

RESUMO

Protein A affinity chromatography is widely used for the large-scale purification of antibodies because of its high yield, selectivity, and compatibility with NaOH sanitation. A general platform to produce robust affinity capture ligands for proteins beyond antibodies would improve bioprocessing efficiency. We previously developed nanoCLAMPs (nano Clostridial Antibody Mimetic Proteins), a class of antibody mimetic proteins useful as lab-scale affinity capture reagents. This work describes a protein engineering campaign to develop a more robust nanoCLAMP scaffold compatible with harsh bioprocessing conditions. The campaign generated an improved scaffold with dramatically improved resistance to heat, proteases, and NaOH. To isolate additional nanoCLAMPs based on this scaffold, we constructed a randomized library of 1 × 1010 clones and isolated binders to several targets. We then performed an in-depth characterization of nanoCLAMPs recognizing yeast SUMO, a fusion partner used for the purification of recombinant proteins. These second-generation nanoCLAMPs typically had a Kd of <80 nM, a Tm of >70 °C, and a t1/2 in 0.1 mg/ml trypsin of >20 h. Affinity chromatography resins bearing these next-generation nanoCLAMPs enabled single-step purifications of SUMO fusions. Bound target proteins could be eluted at neutral or acidic pH. These affinity resins maintained binding capacity and selectivity over 20 purification cycles, each including 10 min of cleaning-in-place with 0.1 M NaOH, and remained functional after exposure to 100% DMF and autoclaving. The improved nanoCLAMP scaffold will enable the development of robust, high-performance affinity chromatography resins against a wide range of protein targets.


Assuntos
Anticorpos , Afinidade de Anticorpos , Cromatografia de Afinidade , Ligantes , Mimetismo Molecular , Engenharia de Proteínas , Proteínas Recombinantes , Anticorpos/química , Anticorpos/imunologia , Anticorpos/metabolismo , Cromatografia de Afinidade/métodos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Hidróxido de Sódio/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Temperatura Alta , Tripsina/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Ligação Proteica
4.
Bioresour Technol ; 385: 129369, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37343793

RESUMO

Glycerol (Gly) was selected as hydrogen-bond-donor for preparing ChCl-based DES (ChCl:Gly), and the mixture of ChCl:Gly (20 wt%) and NaOH (4 wt%) was utilized for combination pretreatment of bulrush at 100 °C for 60 min (severity factor LogRo = 1.78). The effects of DES pretreatment on the chemical composition, microstructure, crystal structure, and cellulase hydrolysis were explored. NaOH-ChCl:Gly could remove lignin (80.1%) and xylan (66.8%), and the enzymatic digestibility of cellulose reached 87.9%. The accessibility of bulrush was apparently increased to 645.2 mg/g after NaOH-ChCl:Gly pretreatment. The hydrophobicity and lignin surface area were reduced to 1.56 L/g and 417 m2/g, respectively. The crystallinity of cellulose was increased from 20.8% to 55.6%, and great changes in surface morphology were observed, which explained the improvement of enzymatic hydrolysis efficiency. Overall, DES combined with alkali treatment could effectively promote the removal of lignin and xylan in bulrush, thus the relative saccharification activity was greatly affected.


Assuntos
Lignina , Xilanos , Lignina/química , Hidróxido de Sódio/farmacologia , Celulose/química , Glicerol/química , Hidrólise , Solventes , Biomassa
5.
Bioresour Technol ; 368: 128318, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36375701

RESUMO

Reduction of inherent structural recalcitrance and improved saccharification efficiency are two important facets to enhance fermentable sugar yield for bioethanol production from lignocellulosic biomass. This study optimized alkaline pretreatment and saccharification conditions employing response surface methodology to improve saccharification yield of jute (Corchorus olitorius cv. JROB-2) biomass. The biomass is composed of cellulose (66.6 %), lignin (19.4 %) and hemicellulose (13.1 %). NaOH concentration exhibited significant effect on delignification during pretreatment. The highest delignification (80.42 %) was obtained by pretreatment with 2.47 % NaOH at 55.8 °C for 5.9 h removing 79.8 % lignin and 34.2 % hemicellulose from biomass, thereby increasing cell wall porosity and allowing better accessibility to saccharification enzyme. During saccharification optimization, significant effect was observed for biomass loading, enzyme concentration and temperature. Optimized saccharification condition yielded maximum saccharification (76.48 %) when hydrolysis was performed at 6.9 % biomass loading with enzyme concentration of 49.52 FPU/g substrate at 51.05 °C for 74.46 h.


Assuntos
Corchorus , Lignina , Biomassa , Lignina/química , Álcalis , Hidróxido de Sódio/farmacologia , Hidrólise
6.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36233018

RESUMO

Inflammation is the main cause of corneal and retinal damage in an ocular alkali burn (OAB). The aim of this study was to investigate the effect of tauroursodeoxycholic acid (TUDCA) on ocular inflammation in a mouse model of an OAB. An OAB was induced in C57BL/6j mouse corneas by using 1 M NaOH. TUDCA (400 mg/kg) or PBS was injected intraperitoneally (IP) once a day for 3 days prior to establishing the OAB model. A single injection of Infliximab (6.25 mg/kg) was administered IP immediately after the OAB. The TUDCA suppressed the infiltration of the CD45-positive cells and decreased the mRNA and protein levels of the upregulated TNF-α and IL-1ß in the cornea and retina of the OAB. Furthermore, the TUDCA treatment inhibited the retinal glial activation after an OAB. The TUDCA treatment not only ameliorated CNV and promoted corneal re-epithelization but also attenuated the RGC apoptosis and preserved the retinal structure after the OAB. Finally, the TUDCA reduced the expression of the endoplasmic reticulum (ER) stress molecules, IRE1, GRP78 and CHOP, in the retinal tissues of the OAB mice. The present study demonstrated that the TUDCA inhibits ocular inflammation and protects the cornea and retina from injury in an OAB mouse model. These results provide a potential therapeutic intervention for the treatment of an OAB.


Assuntos
Queimaduras Químicas , Animais , Apoptose , Queimaduras Químicas/tratamento farmacológico , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Inflamação/tratamento farmacológico , Infliximab/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , RNA Mensageiro , Hidróxido de Sódio/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
7.
Bioresour Technol ; 362: 127772, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35964920

RESUMO

Traditional aerobic composting used for straw treatment shows limited regulation effects and unstable properties, and it is necessary to introduce some co-processing methods to optimize its performance. Herein, segmented aerobic/anaerobic fermentation, combined with chemical treatment with wood vinegar/NaOH, was used to treat wheat straw. The results showed that anaerobic fermentation when used as the first stage could stabilize the wheat straw pH between 5.19 and 6.13 and improve nutrient contents. All treatments had greater effects on substrate aeration porosities (range of 14%) than on total porosity (range of 6%), and the water-holding porosities were improved to a greater extent by NaOH than by wood vinegar. The hemicellulose degradation rate of aerobic-anaerobic treatment was higher than that achieved with anaerobic-aerobic treatment, while the latter method was more effective at removing the neutral detergent-soluble as well as remaining organic matter, which was generated due to a higher KCl content in the ash.


Assuntos
Triticum , Anaerobiose , Fermentação , Hidróxido de Sódio/metabolismo , Hidróxido de Sódio/farmacologia , Triticum/química
8.
An Acad Bras Cienc ; 94(2): e20190996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544842

RESUMO

The present study aimed to evaluate the effect of alkaline treatments with urea, NaOH and Ca(OH)2 on chemical composition and in situ ruminal degradability of dry matter, crud protein and neutral detergent fiber of sugarcane tip hay. Samples were incubated in the rumen of three cannulated cattle for up to 72 hours in a split plot randomized block design. Ammoniation with 6% urea increased (p<0.05) the crude protein content by 13% and reduced the neutral detergent fiber and insoluble nitrogen content of the hay. When treated with the highest doses of the compounds, there was a high potential degradability of dry matter, crude protein and neutral detergent fiber, and a shorter neutral detergent fiber lag time. Ammoniation with urea promotes a reduction in the content of NDF, hemicellulose and insoluble nitrogen, with an increase in the content of CP in the hay, with emphasis for the level of 6% urea. The ruminal degradation of sugarcane tip hay increases with alkaline treatments using 6% urea or 3% NaOH, however, ammoniation with urea is indicated for the treatment of hay, as this is low cost and can be easily adopted by farmers in the semiarid region.


Assuntos
Rúmen , Saccharum , Ração Animal/análise , Animais , Bovinos , Detergentes/metabolismo , Detergentes/farmacologia , Dieta/veterinária , Fibras na Dieta/análise , Digestão , Grão Comestível/química , Fermentação , Nitrogênio/metabolismo , Rúmen/metabolismo , Saccharum/metabolismo , Hidróxido de Sódio/metabolismo , Hidróxido de Sódio/farmacologia , Ureia/farmacologia
9.
Biointerphases ; 17(3): 031004, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618545

RESUMO

This investigation is aimed to determine the effect of the modification of titanium surface with NaOH on the metabolism of osteoblasts treated with zoledronic acid (ZA). Machined and NaOH-treated titanium disks were used. Surfaces were characterized by scanning electron microscopy, confocal microscopy, and x-ray photoelectron spectroscopy (XPS) analysis. Human osteoblasts were seeded onto the disks. After 24 h, cells were treated with ZA at 5 µM for 7 days. At this point, cell viability, collagen synthesis, total protein production, alkaline phosphatase activity, and mineral nodule deposition were assessed. The results of surface roughness were descriptively and statistically analyzed (t-Student), while the XPS results were qualitatively described. Cell metabolism data were analyzed by the analysis of variance two-way and Tukey tests at a 5% significance level. The results demonstrated that NaOH-treatment increased surface roughness (p < .05) and confirmed the presence of sodium titanate and a pH switch on the NaOH-treated disks. This modification also resulted in higher cell viability, collagen synthesis, total protein production, and alkaline phosphatase by osteoblasts when compared to cells seeded onto machined disks (p < 0.05). In the presence of ZA, all cellular metabolism and differentiation parameters were significantly reduced for cells seeded on both surfaces (p < 0.05); however, the cells seeded onto modified surfaces showed higher values for these parameters, except for mineral nodule deposition (p < 0.05). NaOH modification improved cell adhesion and metabolism of osteogenic cells even in the presence of ZA. The surface modification of titanium with NaOH solution may be an interesting strategy to improve metabolism and differentiation of osteoblasts and accelerate osseointegration process, mainly for tissues exposed to ZA.


Assuntos
Fosfatase Alcalina , Titânio , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Colágeno , Humanos , Osteoblastos/fisiologia , Hidróxido de Sódio/farmacologia , Propriedades de Superfície , Titânio/química , Titânio/farmacologia , Ácido Zoledrônico/farmacologia
10.
Biomed Phys Eng Express ; 8(4)2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35594845

RESUMO

The titanium alloy composition and microdesign affect the dynamic interplay between the bone cells and titanium surface in the osseointegration process. The current study aimed to evaluate the surface physicochemical properties, electrochemical stability, and the metabolic response of the MC3T3-E1 cells (pre-osteoblast cell line) cultured onto titanium-15molybdenum (Ti-15Mo) discs treated with phosphoric acid (H3PO4) and sodium hydroxide (NaOH) and/or strontium-loading by the hydrothermal method. The x-ray dispersive energy spectroscopy (EDS) and x-ray diffraction (XRD) analysis showed no trace of impurities and the possible formation of hydrated strontium oxide (H2O2Sr), respectively. The confocal laser microscopy (CLSM) analysis indicated that titanium samples treated with strontium (Sr) showed greater surface roughness. The acid/alkali treatment prior to the hydrothermal Sr deposition improved the surface free energy and resistance to corrosion of the Ti-15Mo alloy. The acid/alkali treatment also provided greater retention of the Sr particles on the Ti-15Mo surfaces accordingly with inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. The AlamarBlue and fluorescence analysis indicated noncytotoxic effects against the MC3T3-E1 cells, which allowed cells' adhesion and proliferation, with greater cells' spreading in the Sr-loaded Ti-15Mo samples. These findings suggest that Sr deposition by the hydrothermal method has the potential to enhance the physicochemical properties of the Ti-15Mo previously etched with H3PO4and NaOH, and also improve the initial events related to cell-mediated bone deposition.


Assuntos
Estrôncio , Titânio , Ligas/farmacologia , Proliferação de Células , Hidróxido de Sódio/farmacologia , Estrôncio/química , Estrôncio/farmacologia , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
11.
Chem Res Toxicol ; 35(2): 218-232, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35129338

RESUMO

Hydrolytic loss of nucleobases from the deoxyribose backbone of DNA is one of the most common unavoidable types of damage in synthetic and cellular DNA. The reaction generates abasic sites in DNA, and it is important to understand the properties of these lesions. The acidic nature of the α-protons of the ring-opened abasic aldehyde residue facilitates the ß-elimination of the 3'-phosphoryl group. This reaction is expected to generate a DNA strand break with a phosphoryl group on the 5'-terminus and a trans-α,ß-unsaturated aldehyde residue on the 3'-terminus; however, a handful of studies have identified noncanonical sugar remnants on the 3'-terminus, suggesting that the products arising from strand cleavage at apurinic/apyrimidinic sites in DNA may be more complex than commonly thought. We characterized the strand cleavage induced by the treatment of an abasic site-containing DNA oligonucleotide with heat, NaOH, piperidine, spermine, and the base excision repair glycosylases Fpg and Endo III. The results showed that under multiple conditions, cleavage at an abasic site in a DNA oligomer generated noncanonical sugar remnants including cis-α,ß-unsaturated aldehyde, 2-deoxyribose, and 3-thio-2,3-dideoxyribose products on the 3'-terminus of the strand break.


Assuntos
Aminas/farmacologia , DNA Glicosilases/metabolismo , DNA/efeitos dos fármacos , DNA/metabolismo , Temperatura Alta , Hidróxido de Sódio/farmacologia , Aminas/química , Clivagem do DNA , Reparo do DNA , Hidróxido de Sódio/química
12.
J Interferon Cytokine Res ; 42(2): 82-89, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35029525

RESUMO

The aim of this study was to analyze the single and combined effects of N-acetyl cysteine (NAC) and doxycycline (Dox) on the inflammatory and angiogenic factors in the rat model of alkali-burned cornea. Rats were treated with a single and combined 0.5% NAC and 12.5 µg/mL Dox eye drops and evaluated on days 3, 7, and 28. In the corneas of various groups, the activity of Catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) enzymes was assessed. The expression of inflammatory factors (TNF-α, Rel-a, and CXCL-1) and angiogenic factors (VEGF-a, MMP2, and MMP9) was measured using real-time polymerase chain reaction. The antioxidant enzyme activities decreased substantially 3 days after injury with sodium hydroxide (NaOH). NAC and combined NAC+ Dox topical treatments increased the SOD enzyme activity on day 28 (P < 0.05). The expression of TNF-α and Rel-a genes following single and combined treatment of NAC and Dox decreased significantly on days 7 and 28 (P < 0.05). The mRNA level of angiogenic factors and corneal neovascularization (CNV) level declined in NaOH-injured rats treated with Dox (P < 0.05). The topical treatment of Dox could attenuate inflammation and CNV complications. However, NAC treatment may not reduce the expression of angiogenic genes.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Queimaduras Oculares , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Álcalis/metabolismo , Álcalis/farmacologia , Indutores da Angiogênese/metabolismo , Indutores da Angiogênese/farmacologia , Animais , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Córnea/metabolismo , Neovascularização da Córnea/etiologia , Neovascularização da Córnea/genética , Modelos Animais de Doenças , Doxiciclina/metabolismo , Doxiciclina/farmacologia , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/complicações , Queimaduras Oculares/tratamento farmacológico , Ratos , Hidróxido de Sódio/metabolismo , Hidróxido de Sódio/farmacologia , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Biochem Biophys Res Commun ; 588: 104-110, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953206

RESUMO

Many species of bacteria interact on the human skin to form a certain microbiome. Delftia acidovorans, a bacterium detected from human skin, inhibits the growth of S. epidermidis, a dominant bacterium of the human skin microbiota. Here, we show that ammonia secreted by D. acidovorans inhibits the growth of S. epidermidis by increasing the pH value of the medium. The pH value of D. acidovorans culture supernatant (CS) was higher than that of the medium without culture. The inhibitory activity of the D. acidovorans CS against the growth of S. epidermidis was decreased by neutralization with hydrochloric acid. Genes encoding enzymes related to ammonia production were found in the D. acidovorans genome. Moreover, the D. acidovorans CS contained a high concentration of ammonia. The addition of ammonia to S. epidermidis culture led to an increase in the reactive oxygen species (ROS) production and inhibited S. epidermidis growth. The addition of sodium hydroxide also led to an increase in the ROS production and inhibited S. epidermidis growth. The inhibitory activity of ammonia and sodium hydroxide against S. epidermidis growth was suppressed by malonic acid, an inhibitor of succinate dehydrogenase in the tricarboxylic acid (TCA) cycle, and N-acetyl-l-cysteine, a free radical scavenger. These findings suggest that D. acidovorans secretes ammonia and alkaline stress inhibits the growth of S. epidermidis by inducing TCA cycle-triggered ROS production.


Assuntos
Álcalis/toxicidade , Ciclo do Ácido Cítrico , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus epidermidis/crescimento & desenvolvimento , Estresse Fisiológico , Amônia/farmacologia , Delftia acidovorans/fisiologia , Sequestradores de Radicais Livres/farmacologia , Concentração de Íons de Hidrogênio , Hidróxido de Sódio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Estresse Fisiológico/efeitos dos fármacos
14.
Bioorg Med Chem ; 54: 116499, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922308

RESUMO

Cyclobutane pyrimidine dimers (CPDs) are the most abundant mutagenic DNA lesions formed in mammalian cells upon exposure to UV-B radiation (280-315 nm) in sunlight. These lesions are thought to be chemically stable and to withstand high concentrations of acids and bases.While earlier investigations of DNA lesions containing saturated pyrimidines have shown that the C4 carbonyl is a potential target of nucleophilic attack, similar reactions with thymine nucleobase model CPDs clearly showed that the cis-syn CPD (major isomer) is stable in the presence of a high concentration of alkali at room temperature. Here is described the alkaline reactivity of these lesions when contained within a dinucleotide CPD model system. Results using cis-syn CPD formed from dinucleotide 5'-TpT-3' combined with [18O]-labelling indicated that CPD undergoes a water addition at the C4=O groups of these now saturated rings. The intermediate formed, however, completely reverts to the starting lesion. Along with confirming the target of water addition within CPD lesions, it was also determined that the two C4 carbonyls present on adjacent saturated pyrimidine rings of the photolesion undergo water exchange at different rates (3' > 5'). Moreover, the difference in reactivity exhibited by these two positions is not limited to a dinucleotide and was observed also in oligonucleotides. Overall, a full understanding of the chemistry of CPD lesions is crucial to our knowledge of naturally-occuring DNA modifications and may lead to further insight into their detection, modification, and biochemical recognition & repair.


Assuntos
Oligonucleotídeos/química , Dímeros de Pirimidina/química , Hidróxido de Sódio/farmacologia , Dano ao DNA , Estrutura Molecular , Raios Ultravioleta
15.
Drug Deliv ; 28(1): 2044-2050, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34595979

RESUMO

Ocular chemical injuries (OCIs) commonly cause ocular damage and visual loss and treatment uses topical therapies to facilitate healing and limit complications. However, the impact of chemical injury on corneal barrier function and treatment penetration is unknown. Therefore, the aim of this study was to determine the effect of OCI on drug penetration and absorption. Porcine corneal explants were used to assess histological damage, electrical resistance, and the trans-corneal penetration/corneal adsorption of reference compounds (sodium fluorescein and rhodamine B) and dexamethasone. Corneal explants were injured with either 1 M sulfuric acid, or 1 M sodium hydroxide. Dexamethasone penetration was measured using high-performance liquid chromatography (HPLC) and that of fluorescein and rhodamine using fluorescence. Dexamethasone corneal adsorption was measured using enzyme-linked immunoabsorbant assay (ELISA). Both acid and alkaline injuries reduced trans-corneal electrical resistance. NaOH injury increased hydrophilic fluorescein penetration (NaOH 8.59 ± 1.50E-05 cm.min-1 vs. Hanks' Balanced Salt Solution (HBSS) 1.64 ± 1.01E-06 cm.min-1) with little impact on hydrophobic rhodamine B (1 M NaOH 6.55 ± 2.45E-04 cm.min-1 vs. HBSS 4.60 ± 0.972E-04 cm.min-1) and dexamethasone penetration (1 M NaOH 3.00 ± 0.853E-04 cm.min-1 vs. HBSS 2.69 ± 0.439E-04 cm.min-1). By contrast, H2SO4 decreased trans-corneal penetration of hydrophilic fluorescein (H2SO4 1.16 ± 14.2E-07 cm.min-1) and of hydrophobic dexamethasone (H2SO4 1.88 ± 0.646E-04 cm.min-1) and rhodamine B (H2SO4 4.60 ± 1.42E-05 cm.min-1). Acid and alkaline OCI differentially disrupted the corneal epithelial barrier function. Acid injury reduced penetration of hydrophobic dexamethasone and rhodamine B as well as hydrophilic fluorescein, which may translate clinically into reduced drug penetration after OCI, while alkaline injury increased fluorescein penetration, with minimal effect on dexamethasone and rhodamine B penetration.


Assuntos
Córnea/efeitos dos fármacos , Dexametasona/farmacocinética , Traumatismos Oculares/induzido quimicamente , Fluoresceína/farmacocinética , Rodaminas/farmacocinética , Administração Tópica , Animais , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Hidróxido de Sódio/efeitos adversos , Hidróxido de Sódio/farmacologia , Ácidos Sulfúricos/efeitos adversos , Ácidos Sulfúricos/farmacologia , Suínos
16.
Int J Biol Macromol ; 190: 810-818, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530035

RESUMO

Lophatherum gracile Brongn. (LGB), a homology material of medicine and food, has plentiful cellulose. Aiming to investigate the physiochemical characteristic differences of LGB cellulose extracted by various pretreatment methods and extraction conditions, the effect of dry crushing and wet beating, and the alkaline solution concentration and temperature were compared. Results showed that the extracted cellulose after dry crushing pretreatment had higher purity and lower non-cellulosic components such as hemicellulose, lignin and ash than those obtained by wet beating pretreatment. Furthermore, the impurities were more thoroughly removed by the alkaline solution at high concentration and temperature. Structural characterization revealed that the cellulose obtained by wet beating pretreatment had more fibrillation and smaller particle size, while destroyed crystallinity resulting in bad thermal stability. The alkaline solution temperature had no effect on the morphology and particle size, but high alkaline solution temperature (90 °C) improved crystallinity and thermal stability. Furtherly, the cellulose II produced by at high alkaline solution concentration (18 wt%) exhibited denser surface, smaller particle size and higher thermal stability than the cellulose I extracted at low alkaline solution concentration (4 wt%). Especially, the crystallinity of cellulose II was higher than that of cellulose I with dry crushing pretreatment, while the cellulose obtained by wet beating displayed an opposite trend. Hydration properties indicated that the water holding capacity, oil binding capacity and swelling capacity of the cellulose pretreated by dry crushing were higher than those of the cellulose pretreated by wet beating, and the cellulose I exhibited higher hydration properties compared to the cellulose II, which may depend on its loose network structure. This study suggested that dry crushing pretreatment and high alkaline solution temperature could effectively improve functional properties of LGB cellulose I and II, which promoted its use in food applications.


Assuntos
Celulose/química , Poaceae/química , Hidróxido de Sódio/farmacologia , Temperatura , Celulose/ultraestrutura , Temperatura Alta , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química , Difração de Raios X
17.
Artif Organs ; 45(4): E53-E64, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33001470

RESUMO

Tissue engineering utilizes an interdisciplinary approach to generate constructs for the treatment and repair of diseased organs. Generation of small vessels as vascular grafts or as envisioned central vessel for vascularized constructs is still a challenge. Here, the decellularization of porcine vessels by a non-detergent based protocol was developed and investigated. Perfusion-decellularization with sodium hydroxide solution resulted in removal of cellular material throughout the whole length of the vessel while preserving structural and mechanical integrity. A re-endothelialization of the retrieved matrix with human umbilical vein endothelial cells and cardiac endothelial cells was achieved through rotation-based seeding employing a custom-made bioreactor. A confluent monolayer was detected on the entire luminal surface. Thus, a non-detergent-based decellularization method allowing the re-endothelialization of the luminal surface was developed in this study, thereby paving the way for future implementation of the resulting construct as vascular graft or as central vessel for tissue engineered constructs in need of a perfusion system with readily available anastomosis sites.


Assuntos
Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Hidróxido de Sódio/farmacologia , Engenharia Tecidual/métodos , Animais , Humanos , Suínos , Enxerto Vascular
18.
J Biomed Mater Res B Appl Biomater ; 109(7): 1059-1073, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33274827

RESUMO

In this work, it is the first time to study the effect of replacing of Na2 O by a fixed amount of Li2 O or K2 O in soda-lime-borate glass on its in vivo biocompatibility. The glass composition was based on xM2 O-20x Na2 O20 CaO60 B2 O3 , (wt %), where, M2 OLi2 O and K2 O, and consequently, samples encoded BN100, BK50, and BL50. The degradation test was carried out in 0.25 M K2 HPO4 solution. The in vivo test was performed in the femoral bone defect of Sprague-Dawley adult male rat. Following up bone formation was conducted by the histological analyses and bone formation markers (alkaline phosphatase [ALP] and osteocalcin [OCN]). Furthermore, the glass effect on the liver and kidney functions was addressed in this study using (alanine transaminase [ALT] and aspartate transaminase [AST]) and (urea and creatinine), respectively. The results of the degradation test showed that the glass dissolution rate was increased by incorporating of K2 O, and its ion release was occurred by a diffusion-controlled process. Moreover, in vivo bioactivity test showed that serum activity of ALP, OCN level, and the newly formed bone was higher in BL50-implanted group than that of BN100 andBK50at 3 w and 6 w post-surgery. As well as, implantation of all glass samples in the femoral bone defect did not alter the liver and kidney functions. In conclusion, the synthesized borate glass was well served as a controlled delivery system for Li+ ion release, which enhanced bone formation as shown from the bone formation markers (ALP and OCN).


Assuntos
Materiais Biocompatíveis , Substitutos Ósseos , Fêmur , Vidro/química , Teste de Materiais , Osteogênese/efeitos dos fármacos , Álcalis/química , Álcalis/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Fêmur/lesões , Fêmur/metabolismo , Masculino , Óxidos/química , Óxidos/farmacologia , Ratos , Ratos Sprague-Dawley , Hidróxido de Sódio/química , Hidróxido de Sódio/farmacologia
19.
J Ocul Pharmacol Ther ; 37(1): 24-34, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33275515

RESUMO

Purpose: The aim of the present study is to comparatively evaluate the anti-inflammatory and antiapoptotic effects of bone marrow and adipose-derived mesenchymal stem cells (MSCs) applied subconjunctivally after alkaline corneal burn. Methods: Thirty-two rats were divided into 4 groups and included in the study (n = 8). While no intervention was made in the control group, a chemical burn was created by applying 4 µL of NaOH soaked in 6 mm filter paper to the right eye of each subject in the other groups under general anesthesia. While only subconjunctival 0.1 mL phosphate-buffered saline (PBS) was injected to in the group 1, 2 × 106 adipose or bone marrow-derived MSC in 0.1 mL PBS was applied subconjunctivally to the subjects in the remaining groups (Group 2 and 3, respectively). Tissue samples were collected for histological analysis on the third day after the burn. Tissue samples were evaluated light microscopically and immunohistochemically stained for interleukin-1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), caspase-3 (Cas-3), and CD68. Results: The IL-1ß and TNF-α staining scores and the number of CD68- and Cas-3-positive stained cells were significantly lower in the groups given bone marrow and adipose-derived MSC compared to the alkaline burn group (P < 0.0001, for all parameters). Epithelial IL-1ß and TNF-α staining scores were significantly lower in the bone marrow-derived MSC group compared to the adipose-derived MSC group (P < 0.0001, for all parameters). Conclusions: The presented study shows that both bone-marrow and adipose-derived MSCs support wound healing in the corneal tissue and strongly suppress the inflammation occured in the tissue.


Assuntos
Anti-Inflamatórios/metabolismo , Medula Óssea/metabolismo , Córnea/metabolismo , Lesões da Córnea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Apoptose , Córnea/efeitos dos fármacos , Córnea/patologia , Lesões da Córnea/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Hidróxido de Sódio/farmacologia
20.
Braz J Anesthesiol ; 70(4): 357-363, 2020.
Artigo em Português | MEDLINE | ID: mdl-32819727

RESUMO

STUDY OBJECTIVE: In this study, we aimed to compare the antimicrobial effects of bupivacaine and fentanyl citrate and to reveal the impact on antimicrobial effect potential in the case of combined use. DESIGN: In vitro prospective study. SETTING: University Clinical Microbiology Laboratory. MEASUREMENTS: In our study, in vitro antimicrobial effect of 0.05 mg.mL-1 fentanyl citrate, 5 mg.mL-1 bupivacaine were tested against Staphylococcus aureus American Type Culture Collection (ATCC) 29213, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 13883, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231 as Group F (Fentanyl Citrate) and Group B (Bupivacaine), respectively. S. aureus ATCC 29213, P. aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 13883 and Escherichia coli ATCC 25922 were cultured onto Mueller Hinton agar (Oxoid, UK) plates and Candida albicans ATCC 10231 were cultured onto Sabouraud dextrose agar (Oxoid, UK) plates for 18-24 hours at 37°C. MAIN RESULTS: In terms of inhibition zone diameters, S. Aureus ATCC 29213, P. aeruginosa ATCC 27853, and C. albicans ATCC10231 values obtained after 12 and 24 hours of incubation were significantly higher in Group F than Group B (p < 0.001). In terms of inhibition zone diameters, E. coli ATCC 25922, and K. pneumomiae ATCC 13883 values obtained after 12 and 24hours of incubation were significantly higher in Group B than Group F (p < 0.001, E. coli 12ª hour p = 0.005). CONCLUSIONS: Addition of fentanyl to Local Anesthetics (LAs) is often preferred in regional anesthesia applications in today's practice owing especially to its effect on decreasing the local anesthetic dose and increasing analgesia quality and patient satisfaction. However, when the fact that fentanyl antagonized the antimicrobial effects of LAs in the studies is taken into account, it might be though that it contributes to an increase in infection complications. When the fact that fentanyl citrate, which was used in our study and included hydrochloric acid and sodium hydroxide as protective agents, broadened the antimicrobial effect spectrum of LAs, had no antagonistic effect and showed a synergistic antimicrobial effect against E. Coli is considered, we are of the opinion that the addition of fentanyl to LAs would contribute significantly in preventing the increasing regional anesthesia infection complications.


Assuntos
Anestésicos Locais/farmacologia , Anti-Infecciosos/farmacologia , Bupivacaína/farmacologia , Fentanila/farmacologia , Anestésicos Locais/administração & dosagem , Anti-Infecciosos/administração & dosagem , Bupivacaína/administração & dosagem , Sinergismo Farmacológico , Fentanila/administração & dosagem , Ácido Clorídrico/farmacologia , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Hidróxido de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...